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A connection between the asymptotic distribution of the zeros of orthogonal
polynomials and the asymptotic behavior of the eigenvalues of Toeplitz matrices
associated with these orthogonal polynomials is given. The result is applied to
various families of orthogonal polynomials. (19B7 Academic Press. Inc

1. INTRODUCTIO:-J

Let a. be a posItIve measure on the real line for which all the moments
exist. The support of a. is defined as

supp(a.) ~ {x E IR I If I: > 0: a.(]x -I:, x + I:[) > 0 j.

If supp(a.) is an infinite set, then there exists a unique sequence of
polynomials p,,(x;a.) = }'"X" + ... (n = 0, 1,2, ... ) with }'" > 0 such that

r+f. p,,(x; a.) p",(x;:x) da.(x) = ()"'."
~ -.I.'

and these polynomials are said to be orthogonal with measure:x. Let R be a
real valued a.-measurable function such that, for every kEN,
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then the infinite Toeplitz matrix T(g;:x) associated with the orthogonal
polynomials Pn(x;:x) consists of the entries

f
+co

[T(g; :x)] ij = Pi(X; IX) pix; :x) g(x) dlX(x)
- 00

(i, j = 0, 1, 2, ... ).

The truncated matrix Tn ( g; :x) contains the first n rows and columns of
T(g; IX):

TI/(g;:x) = [T(g; :X)],.idl. I.." l' ( 1.1 )

It will be convenient to introduce a modified truncated Toeplitz matrix as

where Cn (n = 1, 2, ... ) is a given sequence of positive numbers. Of course,
when Cn== I then T: and Tn coincide.

Let us denote the zeros of P,Jx;:x) in increasing order by
xl. n<x2.,,< .. , <xl/." and the eigenvalues of T,;(g;IX), which are real
since T,; is symmetric, by AI.I/~A2.n~"· ~A".n' Note that for g(x)=x
one has Ak."=xk.,,/e,,. Introduce a sequence of discrete measures Ii"
(n = I, 2, 3, ,.,) on IR by

I""({X;:,"}): ~
~ PI/(A)-O if A contains no x/. "Ie". (1.3 )

If there exists a sequence en such that the measures Pn converge weakly to a
probability measure Ii then we say that the "contracted zeros"
{x i .,,/e,,1i= I, 2, ... , n} are asymptotically distributed according to p. Weak
convergence of a sequence of probability measures p" on IRk to a
probability measure P on IRk holds when for every bounded and continuous
function f on IRk

lim f f(x) dPn(x) = J' I(x) dp(x)
n --..... f. HI.: Rk

(1.4 )

and if this holds for every bounded continuous function I then it will also
hold for every real bounded measurable function I with discontinuities in a
set of p-measure zero [1, Theorem 5.2(iii), p. 31]. If we denote by C K( IRk)
all continuous functions that vanish outside a compact subset of IRk then
weak convergence also holds if and only if (1.4) is true for every IE C K( IRk)
[1, Problem 7, p. 41].



362 W ALTER VAN ASSCHE

We are interested in the asymptotic distribution of the eigenvalues of
T,~(g; a). In a way similar to (1.3) we define discrete measures V//

(n= 1,2,,3, ... ) by

v//(A)=O

if Ai.// has multiplicity k

(1.5)

if A contains no A/.//.

Our main theorem gives a connection between the weak convergence of Ji//
and of VI!"

THEOREM. Suppose that there exists a sequence cn such that the measures
Jin given in (1.3) have a weak limit Ji and such that (l/cn)(Yn-lhn) is 0(';;;)
(}'// is the leading coefficient of p,,(x;a)). If g is a bounded measurable
fimction whose points of discontinuity form a set of Ii-measure ::ero, then VII
as defined in (1.5) will converge weakly to Jig I, for which

(or every Borel set A.

In particular, it follows that whenever the conditions of the theorem are
fulfilled,

1 " , I f

lim - I G(A j ,,) = I G(g(x)) dJi(x)
n--~Inj--'---l "" f

for every continuous function G. Grenander and Szego [5 J considered the
case c" == 1 and they call the measure Ji a canonical distribution. These
authors formulate this theorem for the case supp( a) = [ - I, 1J [5, p. 116 J
but as indicated by Nevai [9, Chap. 5, p.49J their proof is not correct
since they use the Gauss-Jacobi mechanical quadrature with n nodes for
polynomials of degree larger than 2n-- 1. Nevai [10J used the condition of
Erdos and Tunln, i.e., supp( a) = [ - 1, I J and a' > 0 almost everywhere in
[ - 1, 1J, and showed that for the eigenvalues of T,,( g; a), with gEL'

. I // 1 -\ G(g(x))
hm - I G(Ak.II)=-1 ~dx

// 'f' n k ~In. I vll -x'

for every continuous function G. For an alternative proof we refer to a
paper by Mate, Nevai, and Totik [6]. The main purpose of this paper is to
generalize this result to other sets than [- 1, 1J, including orthogonal
polynomials on infinite intervals. In order to do this it was necessary to
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impose stronger conditions on the function g than g E L Cf

': we always sup­
pose that g is a bounded measurable function that is /l-almost everywhere
continuous. The main theorem will be proved in the next Section by techni­
ques very similar to those used by Nevai [9, Chap. 5; 10]. In Section 3 we
will apply the theorem to some relevant families of orthogonal
polynomials.

2. PROOF OF THE THEOREM

We will first give some relations between the asymptotic distribution of
the contracted zeros {xi- ,Jcll } and some asymptotic properties of the
orthogonal polynomials PII(X; x). These results will be of use when we
return to the proof of our main theorem.

LEMMA 1. Let YII be the leading coefficient of pAx; x) and Cn be a
sequence of positive real numbers such that (ljcn)(Yn-dYn) is o(~). Then
for every fEe K( IR)

{
In (X) IJ+X(X)II I }lim - L f ~ ~- I ~ L p;(x;x) dx(x) = O.

lI_f~ n j =l (1/ flf (1/ j=()

(2.1 )

Prool Define another sequence of positive measures ~II (n = 1,2, ... ) by

(2.2)

for every Borel set A. Clearly every ~II is a probability measure on IR and
also every /l11' given in (1.3), is a probability measure on IR. The signed
measure /l11 - ~11 is therefore of bounded variation and the total variation of
PII - C is bounded by 2. The relation (2.1) is now equivalent to

}~~ r: f(x) d(pl1 ~ ~11)(X) = 0

for every IE C K( IR).
Recall the fundamental polynomials of Lagrange interpolation

(2.3 )

The numbers {)'k. n; j = 1, ..., n} are the Christoffel numbers for the
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polynomial p,,(x, x) and are defined to be the unique positive numbers for
which the Gauss-Jacobi mechanical quadrature

f' -+ f_ 1/

J .. n(x)dx(x)= I. j""n(x,,,)
f. i I

(2.4)

holds for every polynomial n of degree at most 2n - I [13, Theorem 3.4.1 ].
By means of the Christoffel-Darboux formula [13, Theorem 3.2,2 J

i'" ,p"(x;x)p,, dY;x)-p" I(X;ex)P,,(Y;x)

i'" x - Y

" ,
= I. p/(x;:i) p,(y; x)

/.- ()

one easily obtains

" I

Lk,,(x)=/k" I. p,(x;ex)P)Xk";X).
/ ~ ()

Combining (2.6) and (2.4) gives [3, p. 25J

II 1 II I

I. -.- LL(x) = I. P7(x; ex)
k~,)~k." ,~()

so that

If f f fIx) d(ll" - ~,,)(X)I

= I~ f f(X~.n)
nj~ 1 ("

x If{;~:,") -I(X)I L;' "(c,,x) da(e"x)

=1 1 +12 ,

(2.5)

(2.6)
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Easy estimation gives

365

1 /I 1 f11 =- I-,
n l _ 1 ).j.1l I¥

. ,If(X~'")_I(x)1 L7,)cn x)dlJ(c n x)
( \r. 11/ c,dl < t ( n

(2.7 )

where

Wt(f:) = sup I/(x) -f(y)1
Ix -\'1 <'

is the modulus of continuity off Also, by means of (2.3)

12=~ f ~,1 f '" If(XIII)-/(X)1 L~Il(cllx)dlJ(cllx)
n j --= I ).f. n 1-\ ,... (.\f-diC"II)1 ?:--1: C1/ /

(

'I ) < 1 ns::' _11_,_1 _ ~ 2 ~.",2UII" ,')'fIlP" I(X, ",lJ)
~'_ n ~. .J

In /.::- I

) ( I" \ 2 11
~ -- lit 1 ., _ 2- '" .•
'" --:2 IIIII y -:- -,-) I, )'1, " P II _ I (.X/, II' lJ)

nt, ( fI ') /I I I ~ I

=~ IIII' y ( ~ ))/:/-1) ~
flS- \ ( 11 I JI I

;-

Since (l/Cn)(YII-I/Yn) is o(.jn), it follows that 12 tends to zero as n tends to
infinity, The result follows since I: is arbitrary and wr<t:) --> 0 as I: tends to
zero. I .

LEMMA 2. Under the same conditions as in the previous lemma one has

lim {~f+T J+ f

," ("-L,I p)x; Ct) Pi(y; lJ))2 f( '~, '~)' dcx(x) (h(y)
"~7_ n ... y --"[ /=0 \(/1 (n

I . -T /I 1 (X X) }
~- J I pJ(x;Ct)I~,'::- da(x) =0

n ,._- 1". j=O ('1 Cn

for every IE C K( IR 2
),

Proof Let us use the notation

II 1

KII(x, y; CZ) = L p/X;CX) Pi(Y; 2)
i~ 0
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and introduce measures fi" (n = 1, 2, ... ) in 1R 2 by

(2.8)

where A is a Borel set in 1R 2
. Again fi" is a probability measure on 1R 2

and (2.7) reduces to

}~~ {r: r: f(x, y) dfi,Jx, y) ~ r:f(x, x) d~,JX)} = 0

for every fE CK( 1R 2
). We may restrict ourself to functions of the form

f(x) g(y) withfand g in CK(IR) since linear combinations of such functions
are dense in CK(1R 2

) with respect to the uniform topology. Then

Irx Lx f(x) g(y) dfi,,(x, y) - f~w f(x) g(x) d~,,(X)1

=~ ILI fy K;,(cllx, CIIY; a){f(x) g(y)-f(x) g(x)]

x da(cllx) dCX(CIlJ,)1

~~rC' Ittv)ldcx(c"y){t .\I<I+t\I~'}
x Ig(x) - g(y)1 K;,(cllx, clly; cx) da(c"x)

=1 1 +/2 ,

Now

and using the Christoffel-Darboux formula (2.5) leads to

12 =~ C~1l /'~Il Irr
y

If(x)1 da(c"x) fl\-,I ~I Ig(x) - g(y)1

lp,,- j(C"x) p"(C,,y)- p"(C,,X) P" \(clly)r d ( )
x (x- y)2 a C"y
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Clearly 12 tends to zero as n tends to infinity and the result follows since f;

is arbitrary and W K( e) --> 0 as e tends to zero. I

The two previous lemmas are actually results on the weak convergence of
the measures ~" and [3" given in (2.2) and (2.8), respectively, when the weak
convergence of fl" in (1.3) is known. This can be formulated as follows:

COROLLARY. If there exists a sequence oj' positive real numbers C/1 such
that fln' given in (1.3) converges weakly to a probability measure fl on IR and
such that (l/cn)(Yn-1IYn) is o(~), then

(a) }~m, ~ it, f(X::,/1) = f_": f(x) dfl(X)

(b) }~~ ~r: fC~J ~~~ p7(x;ex)da(x)= r: f(x)dfl(X)

(c) }~mr ~ r: r:fC~" ~~JCt(~ pJx;a) pk)'; ex)r
x da(x) da(y) =r f f(x, x) dfl(X),

--f.

where f(x) is a bounded and measurable function on IR with discontinuities on
a set oj' fl-measure zero and f(x, y) is a bounded and measurable function on
[R2 for which the discontinuities on the diagonal {(x, x) E [R2} form a set oj'
fl-measure zero.

Formulas (a) and (b) of this corollary have been proved for (',,= I by
Mate, Nevai and Totik [7] for a' > 0 almost everywhere in [ -1, 1] and
supp(ex) n [ ~ e, e] a finite set for every e> 1. However, they allowed the
more general conditionj'E re:;; for Formula (b).

The weak convergence of J1.n does not imply that (l/cn)(Yn llYn) is of the
order o(~) so that it is necessary to include this as an extra condition. In
Section 3 we shall see that this condition can be checked easily in the most
common situations.

The proof of the theorem now proceeds exactly in the same way as
Nevai's proof in [10], but uses the above corollary instead of Nevai's
Theorem 2.
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3. EXAMPLES

Let us apply the theorem to some relevant cases. For a definition of
various families of orthogonal polynomials we refer to [2, Chap. VI].

(a) Let E be a compact set on the real line. The equilibrium energy
of E is defined as

{
" , I }

V( E) = infj I. log-- dfl(X) dflLv)1 fl is a probability measure on E
F"l. Ix-yl

and the capacity erE) of E is equal to exp( - V(E)). If the capacity of E is
positive, then there exists a unique probability measure fl E on E such that

f
' 1

V(E)= J 10g-.--dfl'o(x)dflL(Y)
"0 Ix-.vl

and this measure is called the equilibrium measure (Frostman measure) of
E [14, pp. 54-55]. Now suppose that E is a compact set on the real line
with positive capacity and such that SUPP(fl,,) = E and let E* be a bounded
and at most denumerable set with accumulation points in E. Ify. is a
positive measure on EuE* such that !1,({d!Y./dflL>O})= I, then the
sequence of measures fll/ (with ('1/ = I) converges weakly to the equilibrium
measure flr [15,17,18]. Moreover, since EuE* is compact, there will
exist a number B such that E u E* c [ - B, B] so that

,8 ,8

~j x 2p;(x;!Y.)d!Y.(x)J p; ,(x; !Y.) d!Y.(x)
8 B

Therefore we find that for the eigenvalues of the truncated Toeplitz matrix
TI/( g; !Y.), with g a bounded measurable function that is fl calmost
everywhere continuous,

1 I/f",
lim - I G(Aj.I/) = f .G(g(x)) dfle.(X),

n ----"'ox n j 1 -- cf-

where G is a continuous function, which means that the eigenvalues {AI. I/}

are asymptotically distributed according to the measure fl e.g '. This exam­
ple contains the Erdos-Tunin class of orthogonal polynomials PI/(x; !Y.) with
supp(!Y.) = [-I, I] andy.'>O almost everywhere in [-I, I], so that
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Jacobi polynomials and Pollaczek polynomials on [- 1, 1] are included.
Also other sets are allowed as support, such as a finite union of disjoint
intervals and various Cantor sets.

(b) Let rJ. be a measure such that supp( rJ.) is a bounded and
denumerable set with only one accumulation point at a point tEO R If we
take en == 1 then it follows from Lemma 2.2 in [17] (with E I = {t} ) that Pn
converges weakly to a measure P which has all its mass at the point t;

p(A) = 1

=0

if t EO A

if t rJ A.

It then follows that for the eigenvalues of the truncated Toeplitz matrix
Tn ( g; rJ.), with g a bounded measurable function that is continuous at t,

1 n

lim - L G(i1/on )=G(g(t))
11-+ I n j = 1

with G a continuous function. This example contains Tricomi-Carlitz
polynomials, modified Lommel polynomials and some q-polynomials.

(c) Consider orthogonal polynomials on the infinite interval
( - 00, (0). Suppose a is absolutely continuous (with respect to Lebesgue
measure) with an even weight function w that is almost everywhere positive
and with the following behavior at infinity

1
. log w(x) _ ~
1m II - l.

1\1 ~ I Ixl

It has been shown by Rakhmanov [12] that for f3 > lone can take

r(f3)
A/i=2/i 2{r(f3/2)V

and obtain that the measure ~ln converges weakly to a measure pilon
[ - I, 1] for which

f3 JI Vii I
v(f3; t) = - . 7 7 dy,

nltl~
-1:(t:(l,

where A is a Borel set in [-I, I]. The measure pll is sometimes called an
Ullman measure on [ - I, I]. The same result was proven by Mhaskar and
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Saff [8] for the weight functions w(x) = exp( ~ Ixl /i ) with [3> O. The largest
zero of the polynomial pjx; 0:) can be estimated by [4 ]

max ~~x"./1~2 max
l':::;;k":;;n-l }'k l.:S.;k~n

Rakhmanov [12] has also shown that for [3> I

(
2)1//1. lill,_hm n x/1,/1- ~

II -4 ..r )~II

so that in combination with the previous estimate the boundedness of
(I/c")(Y/1 1h',J follows. For the eigenvalues of the modified truncated
Toeplitz matrix T,;(g; IX), with g Riemann integrable in [ --I, I], we then
obtain

I " ,I

}~m, ;;-I~I G(A j .,,)= J I G(g(x))v(ff;x)dx

with G a continuous function. This example contains Hermite polynomials
and in general all weight functions of Freud type, i.e., w(x) = IxY
exp( -Ixl /l ) (p> -I, fJ> I).

(d) It is well known that orthogonal polynomials P/1(x; IX) satisfy a
recurrence relation

n=O, 1,2, ...

with a/1 = 1'/1 > 0 and h ll E R If we denote the monic polynomials by
PII(X; IX) = (lh'/1) p,,(x; IX), then

If one knows enough about the asymptotic behavior of the recurrence coef­
ficients all and h" (as n ~ CD) then it is possible to obtain the asymptotic
zero distribution [9,11,16]. The order of (l/Cn)(Yn-1IYn) is now easy since
this follows immediately from the behavior of an' Many families of
orthogonal polynomials can be treated by means of the recurrence relation,
such as the Poisson-Charlier polynomials, Meixner polynomials and
Laguerre polynomials.
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